Scene Classification using Spatial Relationship between Local Posterior Probabilities

نویسندگان

  • Tetsu Matsukawa
  • Takio Kurita
چکیده

This paper presents scene classification methods using spatial relationship between local posterior probabilities of each category. Recently, the authors proposed the probability higher-order local autocorrelations (PHLAC) feature. This method uses autocorrelations of local posterior probabilities to capture spatial distributions of local posterior probabilities of a category. Although PHLAC achieves good recognition accuracies for scene classification, we can improve the performance further by using crosscorrelation between categories. We extend PHLAC features to crosscorrelations of posterior probabilities of other categories. Also, we introduce the subtraction operator for describing another spatial relationship of local posterior probabilities, and present vertical/horizontal mask patterns for the spatial layout of auto/crosscorrelations. Since the combination of category index is large, we compress the proposed features by two-dimensional principal component analysis. We confirmed the effectiveness of the proposed methods using Scene-15 dataset, and our method exhibited competitive performances to recent methods without using spatial grid informations and even using linear

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using local transition probability models in Markov random fields for forest change detection

Change detection based on the comparison of independently classified images (i.e. post-classification comparison) is well-known to be negatively affected by classification errors of individual maps. Incorporating spatial-temporal contextual information in the classification helps to reduce the classification errors, thus improving change detection results. In this paper, spatial-temporal Markov...

متن کامل

Superpixel-Based Classification Using K Distribution and Spatial Context for Polarimetric SAR Images

Classification techniques play an important role in the analysis of polarimetric synthetic aperture radar (PolSAR) images. PolSAR image classification is widely used in the fields of information extraction and scene interpretation or is performed as a preprocessing step for further applications. However, inherent speckle noise of PolSAR images hinders its application on further classification. ...

متن کامل

Tesis Doctoral Nuevas Técnicas de Clasificación Probabiĺıstica de Imágenes Hiperespectrales New Probabilistic Classification Techniques for Hyperspectral Images

Hyperspectral sensors provide hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. Since different materials show different spectral properties, hyperspectral imagery is an effective technology for accurately discriminating and classifying materials. However, issues such as the high dimensionality of the data and the presence of nois...

متن کامل

Image Classification Using Probability Higher-Order Local Auto-Correlations

In this paper, we propose a novel method for generic object recognition by using higher-order local auto-correlations on probability images. The proposed method is an extension of bag-of-features approach to posterior probability images. Standard bag-of-features is approximately thought as sum of posterior probabilities on probability images, and spatial co-occurrences of posterior probability ...

متن کامل

The Inference of Structure in Images Using Multi-local Quadrature Filters

Two techniques are presented for corner detection. First, a band of filters are applied with equal radial spatial frequency, but different orientation preferences locally in the image domain. From the energy response, a linear Fourier transform is taken to give confidence measures of both "cornerness" and "edgeness. Second, we consider a multi-local spatial separation of filters that lie on a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010